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LETTER TO THE EDITOR 

Bond-site percolation: empirical representation of critical 
probabilities* 

M Yanukat and R EnglmanS 
t Department of Physical Chemistry and the Fritz Haber Research Center for Molecular 
Dynamics, The Hebrew University, Jerusalem 91904, Israel 
$ Soreq Nuclear Research Center, Yavne 70600, Israel 

Received 8 December 1989 

Abstract. Our Monte Carlo simulations for mixed bond and site percolations on several 
ZD and 3D lattices show that the critical fractions pb' and p" of bonds and sites follow 
the relationship (log pb'/log p,") + (log p*'/log p s )  = 1, where p :  and p :  are the critical 
fractions in the pure bond and site problems. 

In mixed bond-site percolations connected structures are formed by contiguous 
arrangements of both bonds and sites or of either of these (Reynolds er al 1977, 
Heermann and Stauffer 1981, Zallen 1983). The model has been applied to polymer 
gelation (Stauffer et a1 1982), to capillary phenomena in porous media (Yanuka 1989) 
and to fracture of porous concrete by cracks (Englman and Jaeger 1990). When one 
allows a fraction pb of bonds and a fraction p s  of sites to exist in a lattice, the 
corresponding percolation probability function P (  pb, p')  will be zero for a pair of 
values pb<pb*, p'<p:* and non-zero for values pb>pb* and p S > p S * .  The values 
pb*( p s  = 1) = p z  and p s  ( pb = 1) = pr are well known (Essam 1972); however, for mixed 
percolation one has a family of values. For the latter, percolation will occur and an 
infinite cluster is formed at specific combinations of pb* and ps*.  

An extensively studied situation is that where one requires in connected clusters 
that the sites are joined by (occupied) bonds and the bonds are joined by (occupied) 
sites (Agrawal et a1 1979, De'Bell and Essam 1985). Both Monte Carlo simulations 
(Stauffer 1982, Yanuka 1989) and renormalisation group studies (Nakanishi and 
Reynolds 1979) yield pb*-ps* curves similar to those appearing in figure 1, which show 
our Monte Carlo results for a set of lattices in 2~ and 3 ~ ,  in which there is a single 
type of bond and a single type of site. 

The results are well represented analytically by 

ps* = p r ( p b * ) - a  (1) 
where 

a = log pE/log p: .  

Equations (1) and (2) can be rewritten as 
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Figure 1. Critical mixed bond and site probabilities at percolation obtained by Monte 
Carlo simulations for the lattices: face-centred cubic (FCC), simple cubic (sc), triangular 
(TR) and square (sa). The full curves follow (1) and (2). 

Rbb) 

Figure 2. Representation of the data points in figure 1 according to (3) and (4), showing 
the fit to the diagonal (full line). 
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Using new variables 

( a  = s or b) log p a *  
R ( p " ) = -  

log PC" 
(4) 

the data of figure 1 collapse to a single line in accordance with (3) (figure 2). 
To justify (3) we consider an artificial situation built upon a simple square lattice 

as shown in figure 3. We break up the original bond into several bond segments, 
designated b l ,  b2,. . . , bi, . . . , bn, whose fractional occupations are pbl, 
pb2, .  . . , p , . . . , pb" and also superimpose on each junction sites s l ,  s2, .  . . , s j , .  . . , srn 
whose occupations are p"' ,  p s 2 , .  . . , p"', . . . , p"". We shall be interested only in the 
threshold, starred values of p and shall henceforth drop the stars for simplicity. 

bi 

We seek a functional relation 

( 5 )  bn F (  p s i ,  ps2 ,  , . . , p'"; pb', pbZ, . . . , p ) = 1 

that has the following properties. 
(1) F is a symmetric function of the bond probabilities and of the site probabilities. 
(2) When two bond segments (say: bi, bj)  are regarded as a single one (bk), so that 

its occupation probability follows the product rule, namely 

the numerical value of F is unchanged and formally it contains pbk instead of pb' and 
pb'. Similar considerations apply when two sites merge into a single one. 

p b k  = pbipbj  ( 6 )  

Figure 3. A cell of a square lattice containing multiple sites and bonds. 

(3) When all variables except a single bond variable (say, phi), or a single site 
variable (p"') take their maximum value (=1) then a solution of ( 5 )  is 

= p ; i  

or, respectively, 
p"' = pZJ. 

For the network in figure 3 all p:i  are equal (p ,",  say) and so are all p:J ( = p : ) .  
The foregoing requirements strongly indicate the form 

1 1 
F ( { P b i } ,  {P"}) =y C log pbi  + 7 C log p". 

logpc i logpc i 
(7)  

The two-term expression in (3) is a special case of this. 
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The mixed bond-site percolation network shown in figure 4 has two types of sites 
s l  and s2 and a single bond type b. The considerations that have led to the justifications 
of (3) suggest now the following equation: 

52 

where by symmetry p:' = p p .  
We can attempt to find pz' by considering (8) for the case when the sites s l  and 

s2 are equivalent. This means that the occupations of both site types are varied 
randomly in the same manner with the same mean occupations ps' = p s 2  = p s .  

The equation is 

in which the parameters are well known from the pure percolation problems, namely 
p :  = 0.5, p z  = 0.593. Comparing this with (8) forp" = pr2 we find that p :  = 0.5,p5' = pf2 = 
(0.593)2 = 0.35. 

However, the latter value cannot be true for all varieties of the site occupations, 
since for ps' = 1 one has the value for critical concentration of the eight-coordinated 
site given by (Essam 1972) 

ps2( pb = psl = 1) = 0.39. 

The probabilistic explanation of the difference between the two values 0.35 and 
0.39 is that, in the single-site percolation problem near the critical value 0.593, the 
realisations with about the same occupation fractions in the two types are more prone 
to be percolative than the realisations in which one site type is significantly more fully 
occupied than the other. This is why the p" = 1 critical value for p s 2  is higher than 
that for p s 2  - p s ' .  

In our computed results (8) is fairly well obeyed with pz' = pf2 = 0.35, except near 
p s 2  = 1, when the logarithmically plotted curves acquire a downward bend (figure 5). 
The plot of (8) with pz' = pa2 = 0.39 deviates from the diagonal. The difference in the 

Figure 4. A square lattice consisting of two types of sites and a single type of bond. 



Letter to the Editor L343 
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Figure 5. ( a )  Plot of Monte Carlo data for the lattice in figure 4 by use of the variables 
R in (4) for the following values of p,": 0.6 (+), 0.7 ( x ) ,  0.8 (O), 0.9 (U),  1 (0). The 
denominator of R has p :  = 0.5, ptl = p;' = 0.35. The straight line obeys (8). ( b )  Same as 
( a ) ,  but with p:' = pZ2 = 0.39. 

two sets of plots attests to the sensitivity of the representation to even small differences 
in pZ2 (= 12%). Extensions of (3) and (7) are needed when the network contains parallel 
parts, namely those where one bond or junction can be severed (this is equivalent to 
putting their occupation numbers equal to zero) without precluding percolation by 
alternative pathways. In the simplest case one adds a second bond to the one already 
existing between neighbouring sites (figure 5 ) .  Then one can write out the equation 
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for the threshold values by replacing in (3) as follows: 

(10) 
p b * + p b ' + p b Z - p  b l  p b2 . 

For the parallel case the threshold occupations become reduced below their values 
in the absence of assistance from the alternative path. Then the ratio R in (4) exceeds 
unity (in contrast to the previous percolations, where R G 1) and it is natural to plot 
the solutions of (3) in a similar way to the reduced plot in figure 2 but having R (  pb')-' 
and R ( p b 2 ) - '  as coordinates. Figure 7 shows several curves for various values of p :  
(this is the threshold occupation for the combined bond connecting the sites when the 
site occupation is unity, p s  = 1). 

Further work on the extension of the results described here will relate to more 
complex networks, requiring suitable topological classification, higher dimensions and 
continuum percolation. 

sl 

Figure 6. Two parallel bonds connecting sites. 
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Figure 7. Plot of (3) in terms of the variables for the parallel bonds appearing in (10) 
using the inverses of the variables in (4) as coordinates. p'= 1. Values of p," are shown 
on the curves. 
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The solutions of (3) satisfy the following inequality, which can be derived from 
results proved by Hammersiey (1980): 

E* b* P k P  P < P i *  
For a Bethe lattice (Zallen 1983) p :  = p : ,  and the above inequalities collapse to 

the equation 

pS*pb*-  - P c  

which is also the result of (3). 

Our thanks go to Professor Harry Kesten for bringing to our attention Hammersley’s 
work and to Professor Xavier Campi for suggesting the Bethe lattice. 
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